Copied to
clipboard

G = C523C8order 200 = 23·52

2nd semidirect product of C52 and C8 acting via C8/C2=C4

metabelian, supersoluble, monomial, A-group

Aliases: C523C8, C10.Dic5, C10.5F5, Dic5.2D5, C5⋊(C52C8), C53(C5⋊C8), (C5×C10).2C4, C2.(D5.D5), (C5×Dic5).3C2, SmallGroup(200,19)

Series: Derived Chief Lower central Upper central

C1C52 — C523C8
C1C5C52C5×C10C5×Dic5 — C523C8
C52 — C523C8
C1C2

Generators and relations for C523C8
 G = < a,b,c | a5=b5=c8=1, ab=ba, cac-1=a-1, cbc-1=b2 >

4C5
5C4
4C10
25C8
5C20
5C52C8
5C5⋊C8

Character table of C523C8

 class 124A4B5A5B5C5D5E5F5G8A8B8C8D10A10B10C10D10E10F10G20A20B20C20D
 size 1155224444425252525224444410101010
ρ111111111111111111111111111    trivial
ρ211111111111-1-1-1-111111111111    linear of order 2
ρ311-1-11111111i-ii-i1111111-1-1-1-1    linear of order 4
ρ411-1-11111111-ii-ii1111111-1-1-1-1    linear of order 4
ρ51-1-ii1111111ζ87ζ85ζ83ζ8-1-1-1-1-1-1-1ii-i-i    linear of order 8
ρ61-1-ii1111111ζ83ζ8ζ87ζ85-1-1-1-1-1-1-1ii-i-i    linear of order 8
ρ71-1i-i1111111ζ8ζ83ζ85ζ87-1-1-1-1-1-1-1-i-iii    linear of order 8
ρ81-1i-i1111111ζ85ζ87ζ8ζ83-1-1-1-1-1-1-1-i-iii    linear of order 8
ρ92222-1+5/2-1-5/2-1+5/2-1-5/22-1-5/2-1+5/20000-1-5/2-1+5/2-1-5/2-1+5/2-1+5/22-1-5/2-1-5/2-1+5/2-1+5/2-1-5/2    orthogonal lifted from D5
ρ102222-1-5/2-1+5/2-1-5/2-1+5/22-1+5/2-1-5/20000-1+5/2-1-5/2-1+5/2-1-5/2-1-5/22-1+5/2-1+5/2-1-5/2-1-5/2-1+5/2    orthogonal lifted from D5
ρ1122-2-2-1+5/2-1-5/2-1+5/2-1-5/22-1-5/2-1+5/20000-1-5/2-1+5/2-1-5/2-1+5/2-1+5/22-1-5/21+5/21-5/21-5/21+5/2    symplectic lifted from Dic5, Schur index 2
ρ1222-2-2-1-5/2-1+5/2-1-5/2-1+5/22-1+5/2-1-5/20000-1+5/2-1-5/2-1+5/2-1-5/2-1-5/22-1+5/21-5/21+5/21+5/21-5/2    symplectic lifted from Dic5, Schur index 2
ρ132-2-2i2i-1+5/2-1-5/2-1+5/2-1-5/22-1-5/2-1+5/200001+5/21-5/21+5/21-5/21-5/2-21+5/2ζ4ζ534ζ52ζ4ζ544ζ5ζ43ζ5443ζ5ζ43ζ5343ζ52    complex lifted from C52C8, Schur index 2
ρ142-22i-2i-1-5/2-1+5/2-1-5/2-1+5/22-1+5/2-1-5/200001-5/21+5/21-5/21+5/21+5/2-21-5/2ζ43ζ5443ζ5ζ43ζ5343ζ52ζ4ζ534ζ52ζ4ζ544ζ5    complex lifted from C52C8, Schur index 2
ρ152-22i-2i-1+5/2-1-5/2-1+5/2-1-5/22-1-5/2-1+5/200001+5/21-5/21+5/21-5/21-5/2-21+5/2ζ43ζ5343ζ52ζ43ζ5443ζ5ζ4ζ544ζ5ζ4ζ534ζ52    complex lifted from C52C8, Schur index 2
ρ162-2-2i2i-1-5/2-1+5/2-1-5/2-1+5/22-1+5/2-1-5/200001-5/21+5/21-5/21+5/21+5/2-21-5/2ζ4ζ544ζ5ζ4ζ534ζ52ζ43ζ5343ζ52ζ43ζ5443ζ5    complex lifted from C52C8, Schur index 2
ρ17440044-1-1-1-1-1000044-1-1-1-1-10000    orthogonal lifted from F5
ρ184-40044-1-1-1-1-10000-4-4111110000    symplectic lifted from C5⋊C8, Schur index 2
ρ194400-1-5-1+55452+1525+1-1ζ54+2ζ53+1ζ53+2ζ5+10000-1+5-1-5525+1ζ53+2ζ5+15452+1-1ζ54+2ζ53+10000    complex lifted from D5.D5
ρ204-400-1+5-1-5525+1ζ53+2ζ5+1-15452+1ζ54+2ζ53+100001+51-5ζ5452553525ζ5453521545350000    complex faithful
ρ214-400-1-5-1+5ζ53+2ζ5+1ζ54+2ζ53+1-1525+15452+100001-51+55352554535ζ545251ζ5453520000    complex faithful
ρ224-400-1-5-1+55452+1525+1-1ζ54+2ζ53+1ζ53+2ζ5+100001-51+5ζ545352ζ54525545351535250000    complex faithful
ρ234-400-1+5-1-5ζ54+2ζ53+15452+1-1ζ53+2ζ5+1525+100001+51-554535ζ545352535251ζ545250000    complex faithful
ρ244400-1+5-1-5525+1ζ53+2ζ5+1-15452+1ζ54+2ζ53+10000-1-5-1+5ζ53+2ζ5+1ζ54+2ζ53+1525+1-15452+10000    complex lifted from D5.D5
ρ254400-1-5-1+5ζ53+2ζ5+1ζ54+2ζ53+1-1525+15452+10000-1+5-1-5ζ54+2ζ53+15452+1ζ53+2ζ5+1-1525+10000    complex lifted from D5.D5
ρ264400-1+5-1-5ζ54+2ζ53+15452+1-1ζ53+2ζ5+1525+10000-1-5-1+55452+1525+1ζ54+2ζ53+1-1ζ53+2ζ5+10000    complex lifted from D5.D5

Smallest permutation representation of C523C8
On 40 points
Generators in S40
(1 11 20 27 35)(2 36 28 21 12)(3 13 22 29 37)(4 38 30 23 14)(5 15 24 31 39)(6 40 32 17 16)(7 9 18 25 33)(8 34 26 19 10)
(1 35 27 20 11)(2 28 12 36 21)(3 13 22 29 37)(4 23 38 14 30)(5 39 31 24 15)(6 32 16 40 17)(7 9 18 25 33)(8 19 34 10 26)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)

G:=sub<Sym(40)| (1,11,20,27,35)(2,36,28,21,12)(3,13,22,29,37)(4,38,30,23,14)(5,15,24,31,39)(6,40,32,17,16)(7,9,18,25,33)(8,34,26,19,10), (1,35,27,20,11)(2,28,12,36,21)(3,13,22,29,37)(4,23,38,14,30)(5,39,31,24,15)(6,32,16,40,17)(7,9,18,25,33)(8,19,34,10,26), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)>;

G:=Group( (1,11,20,27,35)(2,36,28,21,12)(3,13,22,29,37)(4,38,30,23,14)(5,15,24,31,39)(6,40,32,17,16)(7,9,18,25,33)(8,34,26,19,10), (1,35,27,20,11)(2,28,12,36,21)(3,13,22,29,37)(4,23,38,14,30)(5,39,31,24,15)(6,32,16,40,17)(7,9,18,25,33)(8,19,34,10,26), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40) );

G=PermutationGroup([[(1,11,20,27,35),(2,36,28,21,12),(3,13,22,29,37),(4,38,30,23,14),(5,15,24,31,39),(6,40,32,17,16),(7,9,18,25,33),(8,34,26,19,10)], [(1,35,27,20,11),(2,28,12,36,21),(3,13,22,29,37),(4,23,38,14,30),(5,39,31,24,15),(6,32,16,40,17),(7,9,18,25,33),(8,19,34,10,26)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40)]])

C523C8 is a maximal subgroup of   D5×C5⋊C8  Dic5.4F5  D10.F5  Dic5.F5  C20.14F5  C20.12F5  C102.C4
C523C8 is a maximal quotient of   C523C16

Matrix representation of C523C8 in GL4(𝔽41) generated by

18000
01800
210160
160016
,
16000
71800
50370
70010
,
270150
0091
01140
00380
G:=sub<GL(4,GF(41))| [18,0,21,16,0,18,0,0,0,0,16,0,0,0,0,16],[16,7,5,7,0,18,0,0,0,0,37,0,0,0,0,10],[27,0,0,0,0,0,1,0,15,9,14,38,0,1,0,0] >;

C523C8 in GAP, Magma, Sage, TeX

C_5^2\rtimes_3C_8
% in TeX

G:=Group("C5^2:3C8");
// GroupNames label

G:=SmallGroup(200,19);
// by ID

G=gap.SmallGroup(200,19);
# by ID

G:=PCGroup([5,-2,-2,-2,-5,-5,10,26,643,3004,2009]);
// Polycyclic

G:=Group<a,b,c|a^5=b^5=c^8=1,a*b=b*a,c*a*c^-1=a^-1,c*b*c^-1=b^2>;
// generators/relations

Export

Subgroup lattice of C523C8 in TeX
Character table of C523C8 in TeX

׿
×
𝔽